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R A Y L E I G H - T A Y L O R  I N S T A B I L I T Y  O F  A T H I N  L I Q U I D  L A Y E R  

IN T H E  P R E S E N C E  OF T H R E E - D I M E N S I O N A L  P E R T U R B A T I O N S  

S. M.  Bakhrakh and 13. P. S imono v  UDC 530.12 

We consider the evolution of small three-dimensional perturbations of  an accelerated thin liquid 
layer. The analytical solutions obtained correspond to various types of  initial perturbations: in 
the form of a layer, in the initial velocities, and in the thickness of the layer. Depending on 
the dimensionless parameters which characterize the initial data, the perturbations can increase 
exponentially with time, remain bounded, and change the phase. 

The use of the Lagrangian representation for the equation of motion of accelerated thin-walled systems 
and an incompressible fluid made it possible to obtain a series of new analytical solutions for the initial 
stage of the Rayleigh-Taylor instability (RTI) [1-5]. In the two-dimensional case, the equations of motion 
of an accelerated thin layer in the Lagrangian representation can be linear and admit analytical solutions 
at large displacements [1]. In the three-dimensional case, these equations are nonlinear and difficult to solve 
analytically; therefore, numerical methods are employed [3]. 

In the present paper, in the three-dimensional case the equations of motion of an accelerated thin 
layer with independent Lagrange variables are reduced via linearization to a linear system, which is studied 
analytically. The solutions obtained describe the nonlinear evolution of the contact boundary in the observer's 
space. We reveal the correlation between the evolution of the contact boundary and the dimensionless 
parameters which determine the initial data. As numerical calculations in the compressible-fluid approximation 
show, this relation is also valid for the case of a layer of finite thickness and the half-space of an ideal 
compressible fluid and should be taken into account in RTI analysis in a more complete formulation, for 
example, within the framework of three-dimensional hydrodynamic codes. 

In the presence of three-dimensionai perturbations, the equations of motion of an accelerated thin fluid 
layer can be written as follows [3]: 

Ot 2 - - - -a  N O~ Or I 0~ ] Ot 2 = a  N O~ Or I ~ ' 

Ot 2 = --a O~ O( -- g' a = pho" 

(1) 

Here x, y, and z are the Cartesian coordinates in the observer's space, t is the time, ~ and 7/are the Lagrangian 
coordinates of the particles of the layer, which correspond to their initial coordinates x0 and y0, p is the 
density, h0 is the initial thickness of the layer, p is the external pressure applied from "below," and g is the 
mass acceleration directed oppositely to the Oz axis. The layer of equal thickness occupies the position z = 0, 
on which the initial perturbations are imposed. System (1) follows from the laws of conversation of mass and 
momentum of the layer particles. 

Using the thin-layer approximation, one can determine only the displacements of the middle surface 
of the layer. This enables us to reduce the spatial dimensionality of the problem. If the displacements of the 
Lagrangian elements of the layer's middle surface are determined, the change in the surface mass density a 
relative to its initial value a0 can be expressed as follows [3]: 

d~ dr -1 
0 " ~ 0 "  0 X ~ - - ~  . 

We have a = ph, where p is the current density of the layer element and h is the thickness. If we assume that 
p = p0, this relation allows us to approximately estimate the current thickness h of the layer particles. 
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Fig. 1. Perturbed surface of the layer. 

Let a = g = const. Assuming that  the derivatives of the displacements relative to the Lagrangian 
coordinates are small compared to unity, after linearization we obtain the following system of equations in 
variables ~ and r/: 

02Xl 0z 02yl 0z 02z (0Xl 0yl '~, 
0t 2 = - a  ~ ,  0t 2 - - a  ~-~, 0t 2 = a \  0~ + Or/) Xl -- z - ~, yl = y - r/. (2) 

We consider a solution of system (2) of the form 
xl(~,  tl, t) = A l ( t )  cos(k~) cos(nr/), Yl(~, r/, t) = A2(t) sin(k~) s in(n , ) ,  

z(~, r/, t) = As(t) sin(k~) cos(nr/), 
where k and n are the wavenumbers of harmonic perturbations in the direction of the Ox and Oy axes, 
k = 2re/A1, n = 2~r/,X2, and ,Xl and ,X2 are the corresponding wavelengths. We have the following system of 
differential equations for the functions Ai(t): 

d2A2 d2As 
d2 A1 - - 'akA3,  anA3, - a k A 1  + anA2; 
dt 2 dt 2 - dt 2 - 

whence d4A3(t ) /d t  4 = a2(k 2 + n2)Az(t) .  
A similar relation was obtained for three-dimensional perturbations of the half-space of an 

incompressible fluid [5]. As in the two-dimensional case, the dispersion equation in the three-dimensional 
case is the fourth-order equation 

w 4 = a2(k 2 + n 2) = a2k2(1 + m2), rn = n / k ,  k ~ O. 

Depending on the prescribed initial displacements and velocities, the solutions of the linearized system 
(2) are diverse and are characterized by several dimensionless parameters. One can show that  the initial 
displacements of the layer (and the corresponding changes in the layer thickness) 

z(O) = E, + r lAcos(k~)cos(nr l ) ,  y(O) = 71 + r lmAs in(k~)s in (nr l ) ,  z(O) = Asin(k~)cos(nrl )  (3) 

and the zero initial velocities produce the following solution of system (2): 

x = ~ + 0.5[-1~ cosh(wt) + P2 cos(wt) lA(m 2 + 1) -0.5 cos(k~) cos(nr/), 

y = 77 - 0.5[PI cosh(wt) - P2 c o s ( w t ) l a m ( m  2 + 1) -~ sin(k{) sin(at/), (4) 

z = 0.5[P1 cosh(wt) + P2 cos(wt)]Asin(k{)cos(n~) .  

Here P1 = 1 - r l ( m  2 + 1) 0.5 and P2 = 1 + r l ( m  2 + 1) ~ In this particular solution, the initial amplitudes of 
the displacements in the x and y directions are equal in absolute magnitude to r l A  and r l m A ,  respectively. 

The general form of the perturbed surface of the layer is shown in Fig. 1 for t = 4, n = m = 1, rl = -1 ,  
a = 1, and A = 0.01. To represent the surface, the observation point was chosen so as to show more distinctly 
the difference between the upper and lower peaks. The narrow and acute jets moving downward alternate 
with wide shallow bubbles moving upward with the same speed. 

The parameters rl and A determine the shape and amplitude of the initial perturbation. For n = m = 0, 
the intersection with the xz  plane gives the curve x = ~ + rlAcos(k~) and z = Asin(k~), which we call a 



hypercycloid. The  hypercycloid is asymmetric  relative to the "top" and the "bot tom,"  which significantly 
affects the evolution of the perturbations.  For rl  < 0, the lower peaks are more acute and the upper peaks 
are smoother  and vice versa for rl > 0. If rl = 0, the shape of the perturbed layer is sinusoidal. 

When the shape of the layer is not per turbed,  the initial velocities 

V~(O) = r2Bcos(k~)cos(nr}), Vy(O) = -r2mBsin(k~)sin(nr}) ,  V~(O) = Bsin(k~)cos(nr}) (5) 

give a solution similar to (4), where cosh(wt), cos(wt), r l ,  and A are to be replaced by sinh(wt), sin(wt), r2, 
and B/w.  

The above solutions comprise the exponentially increasing solutions and the solutions with the 
ampl i tude  bounded along the Oz axis. If the coefficients of cosh(wt) or sinh(wt) in the third equations in the 
corresponding systems are zero, one obtains unbounded solutions. Then we have rl  ~ + 1 = 1. For m = 1 
(k = n), we have the parameter  r~ = 1 /v~ .  We note that ,  for two-dimensional perturbat ions (m = n = 0), 
the bounded solutions are obtained for rl = 1 and the solutions which correspond to rl  = 1 / v ~  are the 
exponentially increasing solutions. In this case, the introduction of the per turbat ions in the second direction 
stabilizes the total perturbat ion.  The  ratio of q increments of the growth of three- and two-dimensional 
per turbat ions depends on the ratio between the wavenumbers: q = C/i - + m 2. For k = n, the increment of the 
growth of three-dimensional per turbat ions is a factor of 1.2 greater than that  of two-dimensional perturbations.  
If rl ~ + 1 > 1, the initial per turbat ion changes its phase with time. 

We also obtained solutions for the case where the perturbat ions in the shape of a layer (3) and the 
initial velocities (5) are prescribed. The  evolution of these perturbat ions is determined by the parameter  
r3 = B / ( A w )  together with the parameters rl  and r2. 

The  following two factors contribute to the exponential growth of the ampl i tude  of perturbations: 
(1) tangential  displacement of the fluid particles at the contact boundary (the inflow in the regions of 

the jets moving downward and the outflow from the bubbles moving upward); 
(2) variation of the pressure field caused by contact-boundary deformation (according to the formulation 

of the problem, the pressure isolines follow the deformed contact boundary).  
Depending on the initial conditions, these factors can s t rengthen or weaken each other. The  latter 

is characteristic, for instance, of two-dimensional per turbat ions in the case rl  -- 1 where at the initial 
momen t  of t ime the  per turbed layer is shaped like a cycloid with spikes directed upward. In this case, the 
per turbat ions in the form of a layer, which are close to sinusoidal perturbat ions,  are compensated by the 
out-of-phase per turbat ions in the layer thickness. Bounded oscillatory solutions are also possible when the 
initial per turbat ions  of velocity are specified. 

When the sign of acceleration changes during the motion,  the "unstable" cycloid becomes a "stable" 
cycloid and vice versa. This probably explains the fact observed in experiments [6] tha t  the perturbat ions of 
the plate which are caused by explosion products  at the stage of acceleration increase very slowly or do not 
increase at all at the stage of air-assisted deceleration of the plate. 

We now consider the pulse acceleration of a thin layer. The  initial data  (3) produce the solution 

x = ~ + (rl -- k Y t ) A  cos(k~)cos(nr}), y = r} + ( - r i m  + n V t ) A  sin(k~)sin(nr}), 

z = (1 - r l k V t  - rxmnVt)Asin(k()cos(nr})  + Vt (6) 

(V  = J/pho and J is the magni tude  of the impact  pulse per unit  square). The  growth rate of the ampli tude of 
per turbat ion An(t) along the Oz axis at the per turbat ion spike is dAa/dt = A V r l k (1  + m 2) for sin(k() = - 1  
and cos(nr}) = 1. The  per turbat ion ampl i tude increases linearly for r 1 ~ 0, and it is constant for rl = 0. 
From (6), one can see the difference in per turbat ion dynamics when rl changes sign, i.e., the difference in the 
position of the spikes relative to the direction of the acceleration. 

If the parameter  a = p/pho has, in turn,  small perturbat ions,  this introduces significant singularities 
in the layer dynamics.  Let a = a0 + Aa (a0 = c o n s t  and Aa is a small parameter) .  The  linearized system (2) 
takes the form 

o2x, Oz o2yl Oz O2z 
Ot 2 -- --ao -~ ,  Ot 2" = --ao --Or}' Ot 2 = ao \ O~ + -~-~ ) + Aa. (7) 

Specifying the acceleration per turbat ions in the form Aa = aormsin(k~)cos(nr}), where rm is a 
dimensionless coefficient, the per turbat ions shaped like a layer in the form (3), and the zero initial velocities 
of the layer particles, we obtain the solutions of system (7), which are similar to (4). In particular, 

z = 0.5[(mPl + rmP) cosh(wt) + (AP: - rmP) cos(wt)] sin(k~) cos(nr}), 

where P = k - l ( m  2 + 1) -~ 
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Fig. 2. The perturbation amplitude versus the time for specified initial perturbations of 
velocity: curves 1 and 3 refer to analytical solutions for r2 = --1 and r2 = 1, respectively, 
and curve 2 to the numerical solution for r2 = -1 .  

Fig. 3. The amplitude of the bounded three-dimensional perturbation versus time for 
r2 = 1 /v~:  curve 1 refers to the analytical solution, and curve 2 to the numerical solution. 

When the acceleration (the layer thickness) is specified with rm = A k - l ( m  2 + 1) -~ the rate of 
layer-shaped sinusoidal perturbations (rl = 0) is twice that for the case of a layer of equal thickness. 

For small initial perturbations, the above analytical solutions of the linearized system (2) agree well 
with numerical layer dynamics calculations in the refined formulation of the three-dimensional Lagrangian gas 
dynamics of an ideal compressible fluid. The approach outlined in [7] is employed in the difference schemes 
when the coordinates of the fluid particles for t = 0 are taken to be the Lagrangian coordinates. As the test 
calculations for the numerical method, we used calculations of the nonlinear evolution of two-dimensional 
perturbations of a thin layer. The calculated relationships almost coincide with the analytical results of [1]. 

For n = k = 1 and with the initial perturbations of velocity prescribed (r2 = -1 ) ,  the analytical and 
numerical dependences of the amplitude of three-dimensional perturbations versus time, on a 4 x 32 x 32 grid, 
are shown in Fig. 2 by curves 1 aild 2, respectively. We assume that  a = 1 and the initial thickness of the 
layer is h0 = 0.1. In the calculations, the equation of state of the material has the form 

p = c2(p  - p0) ,  ( s )  

where p is the pressure, p is the density, c = 10.0, and p0 = 7.8. The results of calculations within the 
framework of three-dimensional gas dynamics support the fact that,  for n = k = 1, the perturbation with 
r2 = 1 / ~  is bounded at the RTI of the layer of equal thickness (Fig. 3). The time dependence of the 
exponential growth of the perturbation amplitude obtained numerically for r2 = - 1  nearly coincides with 
the analytical solution. Numerical dependences of the growth of the perturbation amplitude on the time are 
given in Fig. 4 for the case of two- and three-dimensional perturbations. They coincide with the analytical 
solutions. 

We also carried out calculations in a simplified formulation, as is done in [3], with an explicit 
approximation of the nonlinear system (1), rather than of the complete system of gas-dynamic equations. 
The results also support the analytical relations obtained. 

Thus, the effect of the initial data on the growth rate of perturbations of a thin layer is very pronounced. 
Even if the increment of perturbation growth does not change with variation in the initial data, this effect 
can show up in a considerable variation of the preexponential factor. To decrease the rate of perturbation 
growth in the shape of a layer, one should specify the corresponding perturbations in the thickness, which 
compensate them. 

The investigations performed for a thin layer are also important for the more complex RTI problem of 
the contact boundary of a thick layer and the half-space of an ideal compressible fluid. In this case, bounded 
and phase-varying perturbations are possible and the above dimensionless parameters determined for a thin 
layer, which characterize the initial data, are important in these cases as well. This statement is supported 
by the results of three-dimensional calculations carried out in the ideal compressible fluid approximation for 
the case of a thick layer having thickness h = 5, which is comparable with the perturbation wavelength. The 
calculation results for a 25 x 17 • 17 grid are shown in Fig. 5. At the initial moment,  the condition of static 
equilibrium of the layer elements was specified within the framework of the compressible-fluid model with the 
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Fig. 4. Amplitude growth of the two- and three-dimensional perturbations of the layer 
versus the time for r2 = -1 :  curve 1 refers to k = 1 and n = 0, and curve 2 to 
n = k = l .  

Fig. 5. Evolution of perturbations for a thick layer: curve 1 refers to the jets, curve 2 
to the bubbles (r2 = -1) ,  and curve 3 to the jets (r2 = 1). 

equation of state of the form (8) for c = 4.6 and P0 = 7.8. The initial perturbations of velocity with k = 1 
and m = 1 were taken to be exponentially decaying in the depth as in the case of an incompressible fluid [5]. 

The calculations show that the perturbations with r2 = - 1  increase exponentially, the perturbations 
with r2 = 1 change their phase and then increase exponentially, and the perturbations with r2 = 1/V~ 
practically do not change during the period of calculation. 

As in the case of a thin layer, at the initial moments of t ime the growth rate of the bubbles which float 
up is close in absolute value to the velocity of the jets directed downward. But at later times, in contrast to 
a thin layer, the growth rate of the bubbles in a thick layer is noticeably less than the jet velocity. 

Thus, in the case of a thick layer of an ideal compressible fluid, when the perturbations of velocity are 
specified, various types of perturbation evolution are possible: exponentially increasing and bounded solutions 
and cases where the perturbation changes its initial phase. 

However, as the numerical calculations show, all the perturbations increase exponentially when initial 
perturbations are specified in the form of a contact boundary (the initial densities of the liquid remain 
unchanged), their growth rate depending weakly on the parameter rl.  One can draw here some analogies with 
the above case where the perturbations in the thin-layer thickness are specified. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
00043a). 
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